- 相關(guān)推薦
(精選)數(shù)學(xué)解題方法
數(shù)學(xué)解題方法1
"瞻前顧后"出自《楚辭.離騷》,含義是看看前面,又看看后面。形容考慮或處理事情謹慎周到。

解答數(shù)學(xué)題時,很多同學(xué)只追求"做出來",有了一個答案便不再深入思考,缺乏"瞻前顧后"的良好習(xí)慣,從而忽略了另外的`可能性。
例題:甲、乙兩車同時從A、B兩地相向開出,甲車每小時行45千米,乙車每小時行55千米,4小時后兩車相距20千米。求A、B兩地的距離。
分析與解:這是一道比較簡單的行程問題,大多數(shù)同學(xué)可能這樣列式計算:(45+55)×4+20=420(千米)。其實很多同學(xué)在解題時忽視了另一種情況:如果兩車行駛了4小時已經(jīng)相遇,并且一共又多行了20千米,那么兩地的距離就應(yīng)該是兩車4小時所行的路程再減去20千米。因此,還可以這樣列式計算:(45+55)×4-20=380(千米)。這道題存在兩種可能性所以答案不是唯一的。
數(shù)學(xué)解題方法2
高中數(shù)學(xué)選擇題的解題方法
方法一:直接法
所謂直接法,就是直接從題設(shè)的條件出發(fā),運用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識,通過嚴密的推理與計算來得出題目的結(jié)論,然后再對照題目所給的四個選項來“對號入座”.其基本策略是由因?qū)Ч苯忧蠼?
方法二:特例法
特例法的理論依據(jù)是:命題的一般性結(jié)論為真的先決條件是它的特殊情況為真,即普通性寓于特殊性之中,所謂特例法,就是用特殊值(特殊圖形、特殊位置)代替題設(shè)普遍條件,得出特殊結(jié)論,對各個選項進行檢驗,從而作出正確的判斷.常用的特例有取特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等.這種方法實際是一種“小題小做”的解題策略,對解答某些選擇題有時往往十分奏效.
注意:
在題設(shè)條件都成立的情況下,用特殊值(取得越簡單越好)進行探求,從而清晰、快捷地得到正確的答案,即通過對特殊情況的研究來判斷一般規(guī)律,是解答本類選擇題的較佳策略.近幾年高考選擇題中可用或結(jié)合特例法來解答的約占30%.因此,特例法是求解選擇題的好招.
方法三:排除法
數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的選項,找到符合題意的正確結(jié)論.篩選法(又叫排除法)就是通過觀察分析或推理運算各項提供的信息或通過特例,對于錯誤的選項,逐一剔除,從而獲得正確的結(jié)論.
注意:
排除法適應(yīng)于定性型或不易直接求解的選擇題.當(dāng)題目中的條件多于一個時,先根據(jù)某些條件在選項中找出明顯與之矛盾的,予以否定,再根據(jù)另一些條件在縮小選項的范圍內(nèi)找出矛盾,這樣逐步篩選,直到得出正確的答案.它與特例法、圖解法等結(jié)合使用是解選擇題的常用方法,近幾年高考選擇題中占有很大的比重.
方法四:數(shù)形結(jié)合法
數(shù)形結(jié)合,其實質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維與形象思維結(jié)合起來,通過對圖形的處理,發(fā)揮直觀對抽象的支持作用,實現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀.
方法五:估算法
在選擇題中作準確計算不易時,可根據(jù)題干提供的信息,估算出結(jié)果的大致取值范圍,排除錯誤的選項.對于客觀性試題,合理的估算往往比盲目的準確計算和嚴謹推理更為有效,可謂“一葉知秋”.
方法六:綜合法
當(dāng)單一的解題方法不能使試題迅速獲解時,我們可以將多種方法融為一體,交叉使用,試題便能迎刃而解.根據(jù)題干提供的信息,不易找到解題思路時,我們可以從選項里找解題靈感.
高中數(shù)學(xué)的證明題的推理方法
一、合情推理
1.歸納推理是由部分到整體,由個別到一般的推理,在進行歸納時,要先根據(jù)已知的部分個體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì)。在進行類比時,要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法
數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項公式成立。
數(shù)學(xué)答題技巧及方法
做題時,有一些“條件反射”你應(yīng)該記住,這能幫你大大的節(jié)省時間!具體的看看下面吧!對你一定有幫助哦!
1、函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3、面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的`不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸或是……;
4、選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6、恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7、圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點);
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11、數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計算注意系數(shù)1/3,而三角形面積的計算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上;
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
15、遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16、注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;
17、絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18、與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19、關(guān)于中心對稱問題,只需使用中點坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
數(shù)學(xué)解題方法3
1、“某圖象上是否存在一點,使之與另外三個點構(gòu)成平行四邊形”問題:
這類問題,在題中的四個點中,至少有兩個定點,用動點坐標(biāo)“一母示”分別設(shè)出余下所有動點的坐標(biāo)(若有兩個動點,顯然每個動點應(yīng)各選用一個參數(shù)字母來“一母示”出動點坐標(biāo)),任選一個已知點作為對角線的起點,列出所有可能的對角線(顯然最多有3條),此時與之對應(yīng)的另一條對角線也就確定了,然后運用中點坐標(biāo)公式,求出每一種情況兩條對角線的中點坐標(biāo),由平行四邊形的判定定理可知,兩中點重合,其坐標(biāo)對應(yīng)相等,列出兩個方程,求解即可。
進一步有:
①若是否存在這樣的動點構(gòu)成矩形呢?先讓動點構(gòu)成平行四邊形,再驗證兩條對角線相等否?若相等,則所求動點能構(gòu)成矩形,否則這樣的動點不存在。
②若是否存在這樣的動點構(gòu)成棱形呢?先讓動點構(gòu)成平行四邊形,再驗證任意一組鄰邊相等否?若相等,則所求動點能構(gòu)成棱形,否則這樣的動點不存在。
③若是否存在這樣的動點構(gòu)成正方形呢?先讓動點構(gòu)成平行四邊形,再驗證任意一組鄰邊是否相等?和兩條對角線是否相等?若都相等,則所求動點能構(gòu)成正方形,否則這樣的動點不存在。
2.“拋物線上是否存在一點,使兩個圖形的面積之間存在和差倍分關(guān)系”的問題:(此為“單動問題”〈即定解析式和動圖形相結(jié)合的問題〉,后面的19實為本類型的特殊情形。)
先用動點坐標(biāo)“一母示”的方法設(shè)出直接動點坐標(biāo),分別表示(如果圖形是動圖形就只能表示出其面積)或計算(如果圖形是定圖形就計算出它的具體面積),然后由題意建立兩個圖形面積關(guān)系的一個方程,解之即可。(注意去掉不合題意的點),如果問題中求的是間接動點坐標(biāo),那么在求出直接動點坐標(biāo)后,再往下繼續(xù)求解即可。
3.“某圖形〈直線或拋物線〉上是否存在一點,使之與另兩定點構(gòu)成直角三角形”的問題:
若夾直角的'兩邊與y軸都不平行:先設(shè)出動點坐標(biāo)(一母示),視題目分類的情況,分別用斜率公式算出夾直角的兩邊的斜率,再運用兩直線(沒有與y軸平行的直線)垂直的斜率結(jié)論(兩直線的斜率相乘等于-1),得到一個方程,解之即可。
若夾直角的兩邊中有一邊與y軸平行,此時不能使用斜率公式。補救措施是:過余下的那一個點(沒在平行于y軸的那條直線上的點)直接向平行于y的直線作垂線或過直角點作平行于y軸的直線的垂線與另一相關(guān)圖象相交,則相關(guān)點的坐標(biāo)可輕松搞定。
4.“某圖象上是否存在一點,使之與另兩定點構(gòu)成等腰直角三角形”的問題。
①若定點為直角頂點,先用k點法求出另一直角邊所在直線的解析式(如斜率不存在,根據(jù)定直角點,可以直接寫出另一直角邊所在直線的方程),利用該解析式與所求點所在的圖象的解析式組成方程組,求出交點坐標(biāo),再用兩點間的距離公式計算出兩條直角邊等否?若等,該交點合題,反之不合題,舍去。
②若動點為直角頂點:先利用k點法求出定線段的中垂線的解析式,再把該解析式與所求點所在圖象的解析式組成方程組,求出交點坐標(biāo),再分別計算出該點與兩定點所在的兩條直線的斜率,把這兩個斜率相乘,看其結(jié)果是否為-1?若為-1,則就說明所求交點合題;反之,舍去。
5.“題中含有兩角相等,求相關(guān)點的坐標(biāo)或線段長度”等的問題:
題中含有兩角相等,則意味著應(yīng)該運用三角形相似來解決,此時尋找三角形相似中的基本模型“A”或“X”是關(guān)鍵和突破口。
數(shù)學(xué)解題方法4
1、配方法所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的.方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、待定系數(shù)法在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一
5、判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
6、構(gòu)造法在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
數(shù)學(xué)解題方法5
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運動變化的觀點去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2. 數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學(xué)生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。常見的類型
類型 1 學(xué)概念引起的的討論,如 實數(shù)、有理數(shù)、絕對值、點(直線、圓)與圓的位置關(guān)系等概念的分類討論 ;
類型 2 學(xué)運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負數(shù)的問題;
類型 3 質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的'討論;
類型 4 形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。
類型 5 些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標(biāo)的影響,常數(shù)項對截距的影響等。
如分類討論的案例一張長為 9 厘米 ,寬為 8 厘米 的矩形紙板上,剪下一個腰長為 5 厘米 的等腰三角形(要求等腰三角形的一個頂點與矩形的一個頂點重合,其余兩個頂點在矩形的邊上),請計算剪下的等腰三角形的面積?
分類討論思想是對數(shù)學(xué)對象進行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則不重不漏。分類的步驟定討論的對象及其范圍;②確定分類討論的分類標(biāo)準; ③ 按所分類別進行討論; ④ 歸納小結(jié)、綜合得出結(jié)論。注意動態(tài)問題一定要先畫動態(tài)圖。
4 .轉(zhuǎn)化與化歸的思想
轉(zhuǎn)化與化歸市中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
但是轉(zhuǎn)化包括等價轉(zhuǎn)化和非等價轉(zhuǎn)化,等價轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗、調(diào)整和補充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。
常見的轉(zhuǎn)化方法有
( 1 )直接轉(zhuǎn)化法問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題 .
( 2 )換元法“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題 .
( 3 )數(shù)形結(jié)合法原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑 .
( 4 )等價轉(zhuǎn)化法問題轉(zhuǎn)化為一個易于解決的等價命題,達到化歸的目的 .
( 5 )特殊化方法問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題 .
( 6 )構(gòu)造法造”一個合適的數(shù)學(xué)模型,把問題變?yōu)橐子诮鉀Q的問題 .
( 7 )坐標(biāo)法標(biāo)系為工具,用計算方法解決幾何問題也是轉(zhuǎn)化方法的一個重要途徑
數(shù)學(xué)解題方法6
文章摘要:使用正確的解題方法不但可以大大加快解題的速度而且可以提高解題的正確率。為此,數(shù)學(xué)頻道編輯部整理了一些巧妙的解題方法,以便同學(xué)們更好的去學(xué)習(xí)這些知識。
巧化歸
將某一問題化歸為另一問題,將某些已知條件或數(shù)量關(guān)系化歸為另外的條件或關(guān)系,變難為易,變復(fù)雜為簡單。
例1 甲乙兩工程隊分段修筑一條公路,甲每天修12米,乙每天修10米。如果乙隊先修2天,然后兩隊一起修筑,問幾天后甲隊比乙隊多修筑10米?
此題具有與追及問題類似的數(shù)量關(guān)系:甲每天修筑12米,相當(dāng)于甲的“速度”;乙每天修筑10米,相當(dāng)于乙的.“速度”,乙隊先修2天,就是乙先修10×2=20(米),又要甲比乙多修10米,相當(dāng)于追及“距離”是20+10=30(米)。
由此可用追及問題的思維方法解答,即
追及“距離”÷“速度”差=追及時間
↓ ↓ ↓
(10×2+10)÷(12-10)=15(天)
例2 大廳里有兩種燈,一種是上面1個大燈球下綴2個小燈球,另一種是上面1個大燈球下綴4個小燈球,大燈球共360個,小燈球共有1200個。問大廳里兩種燈各有多少盞?
本題若按一般思路解答起來比較困難,若歸為“雞兔問題”解答則簡便易懂。
把1個大燈球下綴2個小燈球看成雞,把1個大燈球下綴4個小燈球看成免。那么,1個大燈球綴2個小燈球的盞數(shù)為:
(360×4-1200)÷(4-2)=120(盞)
1個大燈球下綴4個小燈球的盞數(shù)為:
360-120=240(盞)
或(1200-2×360)÷(4-2)=240(盞)
例3 某人加工一批零件,每小時加工4件,完成任務(wù)時比預(yù)定時間晚2小時,若每小時加工6件,就可提前1小時完工。問預(yù)定時間幾小時?這批零件共有多少件?
根據(jù)題意,在預(yù)定時間內(nèi),每小時加工4件,則還有(4×2)件未加工完,若每小時加工6件,則超額(“不定”)(6×1)件。符合《盈虧問題》條件。
在算術(shù)中,一定人數(shù)分一定物品,每人分的少則有余(盈),每人分的多則不足(虧),這類問題稱盈虧問題。其算法是:
人數(shù)=(盈余+不足)÷分差(即兩次每人分物個數(shù)之差)。
物品數(shù)=每人分得數(shù)×人數(shù)。
若兩次分得數(shù)皆盈或皆虧,則
人數(shù)=兩盈(虧)之差÷分差。
故有解:
零件總數(shù):4×7+4×2=36(件)
或 6×7-6×1=36(件)
例4 一列快車從甲站開到乙站需要10小時,一列慢車由乙站開到甲站需要15小時。兩輛車同時從兩站相對開出,相遇時,快車比慢車多行120千米,兩站間相距多少千米?
按“相遇問題”解是比較困難的,轉(zhuǎn)化成為“工程問題”則能順利求解。
快車每小時比慢車多行120÷6=20(千米)
例5 甲乙二人下棋,規(guī)定甲勝一盤得3分,乙勝一盤得2分。如果他們共下10盤,而且兩人得分相等,問乙勝了幾盤?
此題,看起來好像非要用方程解不可,其實它也可以用“工程問題”來解,把它化歸為工程問題:“一件工作,甲獨做3天完成,乙獨做2天完成。如果兩人合做完成這樣的10件工作,乙做了幾件?
例6 小前和小進各有拾元幣壹元幣15張,且知小前拾元幣張數(shù)等于小進壹元幣張數(shù),小前壹元幣張數(shù)等于小進拾元幣張數(shù),又小前比小進多63元。問小前和小進有拾元幣壹元幣各多少張?
本題的人民幣問題可看作是兩位的倒轉(zhuǎn)數(shù)問題,由兩位數(shù)及其倒轉(zhuǎn)數(shù)性質(zhì)2知,小前的拾元幣與壹元幣張數(shù)差為63÷9=7,故
小前拾元幣為(15+7)÷2=11(張),壹元幣為15-11=4(張)。
小進有拾元幣4張,壹元幣11張。
巧求加權(quán)平均數(shù)
例7 某班上山采藥。15名女生平均每人采2千克,10名男生平均每人采3千克,這個班平均每人采多少千克?此題屬加權(quán)平均數(shù)問題。一般解法:
=3-0.6=2.4(千克)
這種計算方法迅速、準確、便于心算。
算理是:設(shè)同類量a份和b份,a份中每份的數(shù)量為m,b份中每份的數(shù)量為n((m≤n)。
因為它們的總份數(shù)為a+b,總數(shù)量為ma+nb,加權(quán)平均數(shù)為:
或:
這種方法還可以推廣,其算理也類似,如:
某商店用單價為2.2元的甲級奶糖15千克,1.05元的乙級糖30千克和1元的丙級糖5千克配成什錦糖。求什錦糖的單價。
數(shù)學(xué)解題方法7
數(shù)學(xué)學(xué)習(xí)有自身的規(guī)律,許多數(shù)學(xué)問題的解決方法也是有規(guī)律可尋的。作為學(xué)業(yè)考試,主要考查學(xué)生對初中數(shù)學(xué)中的一些基本概念、基本方法的掌握,也即主要考查一些數(shù)學(xué)的通性通法,因此平時切忌不動腦筋,靠“多”做題目,達到掌握的目的。多做題目固然有好處,可以做到見多識廣,但由于學(xué)生學(xué)習(xí)的時間是個有限的常數(shù),而且在這有限的時間內(nèi)還要學(xué)習(xí)其他許多知識,因此單靠盲目地多做練習(xí),達到熟能生巧的程度,看來這條路是行不通的,我們要考慮的是如何提高學(xué)習(xí)的效率,為此我們一定要注意經(jīng)常整理解決常見問題的基本方法。比如對于幾何的證明題,我們要學(xué)會用分析的方法來思考問題:
已知,AD是△ABC的角平分線,BD是BE與BA的比例中項,求證:AD是AE與AC的比例中項。
分析:根據(jù)已知條件可以知道,BD2=BE·BA,進一步可以證得△BDE∽△BAD,得到一些對應(yīng)角相等。而要證明AD是AE與AC的比例中項,即要證明AD2=AE·AC。要證明等積式,就是要證明比例式AEAD=ADAC。要證明比例式,可以考慮利用平行線分線段成比例定理或利用相似三角形的性質(zhì)。根據(jù)本題的條件,就是要證明這四條線段所在的三角形相似,即△ADE∽△ACD。證明三角形相似需要兩個條件,由于∠DAE=∠CAD,因此只需再找一對角相等或夾這個角的兩邊對應(yīng)成比例,首先考慮的是證明兩個角相等,不行時再考慮證明夾這個角的兩邊對應(yīng)成比例,如∠AED=∠ADC。結(jié)合條件,可以證出∠BED=∠BDA,所以就可得到∠AED=∠ADC,從而證得結(jié)果。
像這種思考問題的方法,隱含著數(shù)學(xué)的化歸思想。在熟練掌握數(shù)學(xué)基本概念的前提下,解決較難問題時,我們經(jīng)常采用把問題逐步轉(zhuǎn)化成我們熟悉的、已經(jīng)解決的問題,最終解決新的問題。因此我們要經(jīng)常總結(jié)一些常見問題所采用的常見辦法,如證明兩個角相等,常見的'有哪些方法?證明兩條邊相等,常見的有哪些方法?如何證明直線與圓相切?如何求函數(shù)的解析式?二次函數(shù)的圖象與x軸的交點的橫坐標(biāo)與相應(yīng)的一元二次方程的根有什么關(guān)系?等等。然后再通過適量的練習(xí),達到熟練掌握方法的目的。
數(shù)學(xué)思想是數(shù)學(xué)的精髓,對數(shù)學(xué)思想方法的考查是中考的一個重要方面。因此在數(shù)學(xué)學(xué)習(xí)中要充分注重對數(shù)學(xué)思想的理解。除了上面提到的化歸思想外,初中數(shù)學(xué)中,我們還學(xué)習(xí)過字母表示數(shù)思想、方程思想、函數(shù)思想、分解組合思想、數(shù)形結(jié)合思想、分類討論思想、配方法、換元法、待定系數(shù)法等等。從數(shù)學(xué)思想方法上來認識解決問題的方法,那么就更能提高自己的能力。
最后,學(xué)生還要注意改善學(xué)習(xí)方式,提高學(xué)習(xí)效率。學(xué)生一般都有這樣一個習(xí)慣,考試結(jié)束后,或者作業(yè)做完后喜歡交流答案,這表明學(xué)生急需想知道自己的勞動成果,這是一件好事,但如果再進一步交流一下解題的方法,學(xué)習(xí)效率會更高。因為數(shù)學(xué)題目是大量的,一般學(xué)生是做不完的,不少題目有許多不同的解法,比如兩位學(xué)生的答案一致,但解決問題的方法可能不一樣,可能一種是一般的基本的方法,而另一種是根據(jù)這個問題的特征采用的特殊的方法,各有千秋,通過交流,取長補短,那么就能共同提高,從而也提高了自己的學(xué)習(xí)效率。
數(shù)學(xué)解題方法8
復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠遠不夠,需要解題后的反思與總結(jié)。在反思中才能進一步看透問題的本質(zhì),體會命題的意圖。在總結(jié)的過程中也才能優(yōu)化解題的思路,探索處理問題規(guī)律,形成有自己特色的經(jīng)驗。
在復(fù)習(xí)中既要注重數(shù)學(xué)概念、法則、定理等基礎(chǔ)知識的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會解題中蘊含的數(shù)學(xué)思想方法,并通過不斷積累逐漸的納入自己已有的.知識體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識考點、考點之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對所解題的結(jié)構(gòu)是否理解清楚,解題過程中運用了哪些基礎(chǔ)知識和基本技能?哪些步驟易出錯?原因何在?如何防止?也可以對解題的方法進行評價找出最優(yōu)的解法,考慮解題中運用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來的?有無規(guī)律可循?也可以對解題步驟進行分析,抓住解題的關(guān)鍵。如解題的難點在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個經(jīng)常性、自覺性的學(xué)習(xí)行為,就會在不斷地積累和總結(jié)基本的數(shù)學(xué)活動經(jīng)驗中,提高數(shù)學(xué)知識的運用能力。
數(shù)學(xué)解題方法9
一、數(shù)學(xué)解題方法與技巧教學(xué)的研究
前面所說的數(shù)學(xué)習(xí)過程的練習(xí)題一般是由標(biāo)準答案,已知和求解都是十分清楚的。而實際生活中許多問題預(yù)先是不知答案或者不一定有統(tǒng)一的答案,甚至可能沒有答案,這樣一類可以用數(shù)學(xué)方法去研究和解決的問題稱為數(shù)學(xué)問題解答。它的常見類型和價值是這樣的。
1. 可以構(gòu)建數(shù)學(xué)模型的非常規(guī)的實際問題。這類問題往往不是純數(shù)學(xué)化的問題模式,而是一種情景,一種實際需求,只是為了解決遇到的困難,需要講實際問題轉(zhuǎn)化為數(shù)學(xué)模型并進行解釋與解決。這是在生活和實踐中運用數(shù)學(xué)最常用的方式,培養(yǎng)的是學(xué)生面對實際進行的問題解決能力。
2. 探究性問題:要求的是通過一定的探索,研究來認識數(shù)學(xué)對象的性質(zhì),去發(fā)現(xiàn)其數(shù)學(xué)規(guī)律,這種問題要求一種研究式的思維能力,在問題解決過程中感受發(fā)現(xiàn)的樂趣,它培養(yǎng)的是一種主動探索精神和科學(xué)態(tài)度。
3. 開放性問題:是問題的條件、結(jié)論、解題策略或應(yīng)用等方面具有一定的開放程度的問題,學(xué)生在研究這類問題時通常采用的是合作研究,這種方式可互相啟發(fā)學(xué)生的合作與交流,在交流和合作中完善和優(yōu)化自己的思維。這類問題的解決可培養(yǎng)學(xué)生的思維的靈活性和發(fā)散性。培養(yǎng)學(xué)生的創(chuàng)新意識。
二、解題的方法與技巧
數(shù)學(xué)思想方法在解題中有不可忽視的作用
解題的'學(xué)習(xí)過程通常的程序是:閱讀數(shù)學(xué)知識,理解概念;在對例題 和 老師的講解進行反思,思考例題的方法、技巧和解題的規(guī)范過程;然后做數(shù)學(xué)練習(xí)題。
基本題要練程序和速度;典型題嘗試一題多解開發(fā)數(shù)學(xué)思維;最后要及時總結(jié)反思改錯,交流學(xué)習(xí)好的解法和技巧。著名的數(shù)學(xué)教育家波利亞說過“如果沒有反思,就錯過了解題的的一次重要而有意義的方面。”
教師在教學(xué)設(shè)計中要讓學(xué)生解好數(shù)學(xué)問題,就要對數(shù)學(xué)思想方法有清楚的認識,才能更好的挖掘題目的功能,引導(dǎo)學(xué)生發(fā)現(xiàn)總結(jié)題目的解法和技巧,提高解題能力。
數(shù)學(xué)解題方法10
第一步:首先要記住零點存在定理,介值定理,中值定理、極限存在的兩個準則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時可以借助幾何意義去記憶。
因為知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調(diào)性"與"有界性"都是很好驗證的。再比如直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如20xx年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的`圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為"逆推"。
如第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
數(shù)學(xué)解題方法11
對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。
審題
認真、仔細地審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗證。有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候?qū)W生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”
所以,在實際解題時,應(yīng)特別注意,審題要認真、仔細。
初中數(shù)學(xué)解題方法之增加習(xí)題的難度
人們認識事物的過程都是從簡單到復(fù)雜,一步一步由表及里地深入下去。
增加習(xí)題的難度
應(yīng)先易后難,逐步增加習(xí)題的難度。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學(xué)生不太重視這些基本的、簡單的習(xí)題,認為沒有必要花費時間去解這些簡單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習(xí)題,并不一定比解一道復(fù)雜難題的'勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動強度大。所以在相同時間內(nèi),解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由于太重,超出了扛米人的能力,以至于扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許并不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習(xí)題,其收獲也許會更大。
因此,我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
數(shù)學(xué)解題方法12
1.常數(shù)問題:
(1)點到直線的距離中的常數(shù)問題:
“拋物線上是否存在一點,使之到定直線的距離等于一個固定常數(shù)”的問題:
先借助于拋物線的解析式,把動點坐標(biāo)用一個字母表示出來,再利用點到直線的距離公式建立一個方程,解此方程,即可求出動點的橫坐標(biāo),進而利用拋物線解析式,求出動點的縱坐標(biāo),從而拋物線上的動點坐標(biāo)就求出來了。
(2)三角形面積中的常數(shù)問題:
“拋物線上是否存在一點,使之與定線段構(gòu)成的動三角形的面積等于一個定常數(shù)”的問題:
先求出定線段的長度,再表示出動點(其坐標(biāo)需用一個字母表示)到定直線的距離,再運用三角形的面積公式建立方程,解此方程,即可求出動點的橫坐標(biāo),再利用拋物線的解析式,可求出動點縱坐標(biāo),從而拋物線上的動點坐標(biāo)就求出來了。
2.“在定直線(常為拋物線的對稱軸,或x軸或y軸或其它的定直線)上是否存在一點,使之到兩定點的距離之和最小”的.問題:
先求出兩個定點中的任一個定點關(guān)于定直線的對稱點的坐標(biāo),再把該對稱點和另一個定點連結(jié)得到一條線段,該線段的長度〈應(yīng)用兩點間的距離公式計算〉即為符合題中要求的最小距離,而該線段與定直線的交點就是符合距離之和最小的點,其坐標(biāo)很易求出(利用求交點坐標(biāo)的方法)。
3.三角形周長的“最值(最大值或最小值)”問題:
“在定直線上是否存在一點,使之和兩個定點構(gòu)成的三角形周長最小”的問題(簡稱“一邊固定兩邊動的問題):
由于有兩個定點,所以該三角形有一定邊(其長度可利用兩點間距離公式計算),只需另兩邊的和最小即可。
4.三角形面積的最大值問題:
①“拋物線上是否存在一點,使之和一條定線段構(gòu)成的三角形面積最大”的問題(簡稱“一邊固定兩邊動的問題”):
(方法1)先利用兩點間的距離公式求出定線段的長度;然后再利用上面3的方法,求出拋物線上的動點到該定直線的最大距離。最后利用三角形的面積公式底·高1/2。即可求出該三角形面積的最大值,同時在求解過程中,切點即為符合題意要求的點。
(方法2)過動點向y軸作平行線找到與定線段(或所在直線)的交點,從而把動三角形分割成兩個基本模型的三角形,動點坐標(biāo)一母示后,進一步可得到轉(zhuǎn)化為一個開口向下的二次函數(shù)問題來求出最大值。
②“三邊均動的動三角形面積最大”的問題(簡稱“三邊均動”的問題):
先把動三角形分割成兩個基本模型的三角形(有一邊在x軸或y軸上的三角形,或者有一邊平行于x軸或y軸的三角形,稱為基本模型的三角形)面積之差,設(shè)出動點在x軸或y軸上的點的坐標(biāo),而此類題型,題中一定含有一組平行線,從而可以得出分割后的一個三角形與圖中另一個三角形相似(常為圖中最大的那一個三角形)。利用相似三角形的性質(zhì)(對應(yīng)邊的比等于對應(yīng)高的比)可表示出分割后的一個三角形的高。從而可以表示出動三角形的面積的一個開口向下的二次函數(shù)關(guān)系式,相應(yīng)問題也就輕松解決了。
數(shù)學(xué)解題方法13
摘 要:數(shù)學(xué)思想、數(shù)學(xué)方法很多,這里僅就高中教材中和考試題中常見的四種:函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化化歸思想作些探討,讓學(xué)生從中體會四種基本數(shù)學(xué)思想方法在解題中的重要作用。
關(guān)鍵詞:數(shù)學(xué);思想方法;高中;應(yīng)用
數(shù)學(xué)思想、數(shù)學(xué)方法很多,這里僅就高中教材中和考試題中常見的四種:函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化化歸思想作些探討,讓學(xué)生從中體會四種基本數(shù)學(xué)思想方法在解題中的重要作用。
函數(shù)思想就是運用運動和變化的觀點,集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)問題中的等量關(guān)系,建立或構(gòu)造函數(shù)關(guān)系,再運用函數(shù)的圖象和性質(zhì)去分析問題,達到轉(zhuǎn)化問題的目的,從而使問題獲得解決的思想。
方程思想,就是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型―方程或方程組,通過解方程或方程組,或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決的思想。
1、函數(shù)與方程的思想
函數(shù)與方程的思想是高中數(shù)學(xué)中最基本也是最重要的思想方法之一,在高考中有非常重要的地位。數(shù)學(xué)中很多函數(shù)的問題需要用方程的知識和方法來支持,很多方程的問題需要用函數(shù)的知識和方法去解決,即函數(shù)與方程可相互轉(zhuǎn)化。
下面來看這樣一道例題:
例1:和 的定義域都是非零實數(shù)集,是偶函數(shù),是奇函數(shù),且求的取值范圍。
分析:已知兩個函數(shù)的和,求商,好象從未見過。我們不能只看符號,不注重文字,其實這一題的關(guān)鍵在于“是偶函數(shù),是奇函數(shù)”,于是就有,又有再把換成。這時不能再把 當(dāng)函數(shù)解析式來看了,知道了+,-就可以把它們當(dāng)成兩個未知數(shù),只需去解一個二元一次方程組問題就解決了。
由于函數(shù)在高中數(shù)學(xué)中的舉足輕重的地位,因而函數(shù)與方程的思想一直是高考要考察的重點,它在解析幾何、立體幾何、數(shù)列等知識中都有廣泛應(yīng)用。
2、數(shù)形結(jié)合的思想
數(shù)形結(jié)合思想就是充分運用數(shù)的嚴謹和形的直觀,將抽象的數(shù)學(xué)語言與直觀的圖形語言結(jié)合起來,使抽象思維和形象思維結(jié)合,通過圖形的描述,代數(shù)論證來研究和解決數(shù)學(xué)問題的一種數(shù)學(xué)思想方法。
數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué),數(shù)和形的關(guān)系是非常密切的。把數(shù)和形結(jié)合起來,能夠使抽象的數(shù)學(xué)知識形象化,把數(shù)學(xué)題目中的一些抽象的數(shù)量關(guān)系轉(zhuǎn)化為適當(dāng)?shù)膸缀螆D形,在具體的幾何圖形中尋找數(shù)量之間的聯(lián)系,由此可以達到化難為簡、化繁為易的目的。
看一道數(shù)形結(jié)合的例題:
例2:已知關(guān)于x 的方程=px,有4個不同的實根,求實數(shù)p的取值范圍。
分析:設(shè)y = = 與y=px這兩個函數(shù)在同一坐標(biāo)系內(nèi), 畫出這兩個函數(shù)的'圖像
(1)直線y= px與y=-(x-4x+3),x[1,3]相切時原方程有3個根。
(2)y=px與x軸重合時, 原方程有兩個解, 故滿足條件的直線y=px應(yīng)介于這兩者之間,由:得x+(p -4)x+3=0,再由△=0得,p=4±2,當(dāng)p=4+2時, x=-[1,3]舍去, 所以實數(shù)p的取值范圍是0,在數(shù)學(xué)中只要我們注意運用數(shù)形結(jié)合思想,既可增加同學(xué)們對數(shù)學(xué)的興趣,同時又能提高對數(shù)學(xué)問題的理解力和解題能力,也是提高數(shù)學(xué)素質(zhì)不可缺少的因素之一。
3、轉(zhuǎn)化與化歸的思想
轉(zhuǎn)化與化歸思想是通過某種轉(zhuǎn)化過程,把待解決的問題或未知解的問題轉(zhuǎn)化到已有知識范圍內(nèi)可解的問題或者容易解決的問題的一種重要思想方法。通過不斷轉(zhuǎn)化,把不熟悉、不規(guī)范、復(fù)雜的問題轉(zhuǎn)化為熟悉、規(guī)范甚至模式化、簡單的問題。
轉(zhuǎn)化與化歸的思想貫穿于整個數(shù)學(xué)中,掌握這一思想方法,學(xué)會用轉(zhuǎn)化與化歸的思想方法分析問題、處理問題有著十分重要意義
看一個簡單的例子:
例3:求函數(shù)的最值
分析:若平方、移項等,你會發(fā)現(xiàn)這些嘗試都是徒勞無功的。我們注意到:可以把換成什么?有了,也是在上的!
從某種意義上講,解答每一道題都是通過探索而找到解題思路,通過轉(zhuǎn)化達到解題目的。轉(zhuǎn)化時,一般是把一個領(lǐng)域內(nèi)的問題轉(zhuǎn)化為另一個領(lǐng)域內(nèi)的問題;把實際問題轉(zhuǎn)化為數(shù)學(xué)模型;把陌生繁復(fù)的問題轉(zhuǎn)化為熟悉,簡單的問題等。
4、分類討論的思想
所謂分類討論,就是在研究和解決數(shù)學(xué)問題時,當(dāng)問題所給對象不能進行統(tǒng)一研究,我們就需要根據(jù)數(shù)學(xué)對象的本質(zhì)屬性的相同點和不同點,將對象區(qū)分為不同種類,然后逐類進行研究和解決,最后綜合各類結(jié)果得到整個問題的解決,這一思想方法,我們稱之為“分類討論的思想”。
分類討論時,必須遵循兩個原則:(1)對存在總域的各個子域分類做到“既不重復(fù),又不遺漏”;(2)每次分類必須按同一標(biāo)準進行。數(shù)學(xué)分類思想的關(guān)鍵在于正確選擇分類標(biāo)準,要找到適當(dāng)?shù)姆诸悩?biāo)準,就必須運用辨證的邏輯思維,就必須對具體事物具體分析,在表面上極為相似的事物之間看出它們本質(zhì)上的差異點,在表面上差異極大的事物之間看出它們本質(zhì)上的相同點。這樣才能揭示數(shù)學(xué)對象之間的內(nèi)在規(guī)律,對數(shù)學(xué)對象進行有意義的分類。
分類討論難免會有點繁瑣,看似一道題,卻相當(dāng)于幾道題的工作量。但當(dāng)目標(biāo)不明確時,分類討論就是開門鑰匙了!
分類討論思想是解決問題的一種邏輯方法,這種思想在簡化研究對象,發(fā)展思維方面起著重要作用,因此,有關(guān)分類討論的思想的數(shù)學(xué)命題在高考試題中占有重要地位。
以上四種數(shù)學(xué)思想方法對認知數(shù)學(xué)活動的一般規(guī)律;對領(lǐng)悟數(shù)學(xué)精神、思想和方法,建立正確的數(shù)學(xué)觀和數(shù)學(xué)教育觀;對改進學(xué)生的學(xué)習(xí)、提高學(xué)業(yè)成績、提高數(shù)學(xué)素質(zhì)、培養(yǎng)智能型、創(chuàng)新型人才都能起到積極的推動作用,所以在今后的學(xué)習(xí)過程中,我們要不斷進行歸納和總結(jié),不斷體會這四種重要數(shù)學(xué)思想方法在數(shù)學(xué)解題中的作用。
數(shù)學(xué)解題方法14
高中數(shù)學(xué)解題的方法
對于數(shù)學(xué)解題思維過程,G . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計劃、實現(xiàn)計劃和回顧。這四個階段思維過程的實質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實施、反思。
第一階段:理解問題是解題思維活動的開始。
第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。
第三階段:計劃實施是解決問題過程的實現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運用和思維過程的具體表達,是解題思維活動的重要組成部分。
第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的開始。
數(shù)學(xué)解題的技巧
為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進一步提高探索的成效,我們必須掌握一些解題的策略。
一切解題的策略的基本出發(fā)點在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達到解決原題的目的。
基于這樣的認識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、 熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的'是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
常用的途徑有:
(一)、充分聯(lián)想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
(二)、全方位、多角度分析題意:
對于同一道數(shù)學(xué)題,常常可以不同的側(cè)面、不同的角度去認識。因此,根據(jù)自己的知識和經(jīng)驗,適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當(dāng)構(gòu)造輔助元素:
數(shù)學(xué)中,同一素材的題目,常常可以有不同的表現(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。
數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點、線、面、體),構(gòu)造算法,構(gòu)造多項式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。
二、簡單化策略
所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。
因此,在實際解題時,這兩種策略常常是結(jié)合在一起進行的,只是著眼點有所不同而已。
高二數(shù)學(xué)解析幾何訓(xùn)練題精選
一、選擇題:
1、直線 的傾斜角是______。
A. B. C. D.
2、直線m、l關(guān)于直線x = y對稱,若l的方程為 ,則m的方程為_____。
A. B. C. D.
3、已知平面內(nèi)有一長為4的定線段AB,動點P滿足PA—PB=3,O為AB中點,則OP的最小值為______ 。
A.1 B. C.2 D.3
4、點P分有向線段 成定比λ,若λ∈ ,則λ所對應(yīng)的點P的集合是___。
A.線段 B.線段 的延長線 C.射線 D.線段 的反向延長線
5 、已知直線L經(jīng)過點A 與點B ,則該直線的傾斜角為______。
A.150° B.135° C.75° D.45°
6、經(jīng)過點A 且與直線 垂直的直線為______。
A. B. C. D.
7、經(jīng)過點 且與直線 所成角為30°的直線方程為______。
A. B. 或
C. D. 或
8、已知點A 和點B ,直線m過點P 且與線段AB相交,則直線m的斜率k的取值范圍是______。
A. B. C. D.
9、兩不重合直線 和 相互平行的條件是______。
A. B. 或 C. D.
10、過 且傾斜角為15°的直線方程為______。
A. B. C. D.
數(shù)學(xué)解題方法15
高中數(shù)學(xué)學(xué)習(xí)方法:其實就是學(xué)習(xí)解題
高中數(shù)學(xué)是應(yīng)用性很強的學(xué)科,學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)解題。搞題海戰(zhàn)術(shù)的方式、方法固然是不對的,但離開解題來學(xué)習(xí)數(shù)學(xué)同樣也是錯誤的。其中的關(guān)鍵在于對待題目的態(tài)度和處理解題的方式上。
1、首先是精選題目,做到少而精。
只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數(shù)學(xué)題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。
解題不是目的,我們是通過解題來檢驗我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機會。對于一道完成的題目,有以下幾個方面需要總結(jié):
①在知識方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵學(xué)生自己總結(jié)、歸納題目類型)。
【摘要】“高中數(shù)學(xué)多邊形內(nèi)角和公式”數(shù)學(xué)公式是解題的要點,要靈活運用,希望下面公式為大家?guī)韼椭?/p>
設(shè)多邊形的邊數(shù)為N
則其內(nèi)角和=(N-2)*180°
因為N個頂點的N個外角和N個內(nèi)角的和
=N*180°
(每個頂點的一個外角和相鄰的內(nèi)角互補)
所以N邊形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N邊形的外角和等于360°
設(shè)多邊形的邊數(shù)為N
則其外角和=360°
因為N個頂點的N個外角和N個內(nèi)角的和
=N*180°
(每個頂點的一個外角和相鄰的內(nèi)角互補)
所以N邊形的內(nèi)角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N邊形的內(nèi)角和等于(N-2)*180°
如何學(xué)好數(shù)學(xué)
首先和敏捷對于來說固然重要,但良好的可以把效果提高幾倍,這是先天因素不可比擬的。學(xué)好首先要過的是關(guān)。任何事情都有一個由量變到質(zhì)變的循序漸進的積累過程。
一.。不等于瀏覽。要深入了解內(nèi)容,找出重點,難點,疑點,經(jīng)過思考,標(biāo)出不懂的,有益于抓住重點,還可以培養(yǎng)自學(xué),有時間還可以超前學(xué)習(xí)。
二.聽講。核心在。1。以聽為主,兼顧記錄。2。注重過程,輕結(jié)論。
3.有重點。4。提高聽課。
三.。像演電影一樣把課堂,整理筆記,
四.多做練習(xí)。1。晚上吃飯后,坐到書桌時,看數(shù)學(xué)最適合,2。做一道數(shù)學(xué)題,每一步都要多問個別為什么,不能只滿足于課堂上的灌輸式傳授和書本上的簡單講述,要想提高必須要一步一步推 高中歷史,一步一步想,每個過程都必不可少,3。不要粗心大意,4。做完每一道題,要想想為什么會想到這樣做,建立一種條件發(fā)射,關(guān)鍵在于每做一道題要從中得到東西,錯在哪,5。解題都有固定的套路。6還有大膽的夸獎自己,那是樹立信心的關(guān)鍵時刻,
五.總結(jié)。1。要將所學(xué)的知識變成知識網(wǎng),從大主干到分枝,清晰地深存在腦中,新題想到老題,從而一通百通。2。建立錯誤集,錯誤多半會錯上兩次,在有意識改正的情況下,還有可能錯下去,最有效的應(yīng)該是會正確地做這道題,并在下次遇到同樣情況時候有注意的意識。3。周末再將一周做的題回頭看一番,提出每道題的思路方法。4有問題一定要問。
六.考前復(fù)習(xí),1。前2周就要開始復(fù)習(xí),做到心中有數(shù),否則會影響發(fā)揮,再做一遍以前的錯題是十分必要的,據(jù)說有一個同學(xué)平時只有一百零幾,離只有一個月,把以前錯題從頭做一遍,最后他數(shù)學(xué)居然得了147分。2。要重視基礎(chǔ),
另外,聽老師的.話,勤學(xué)苦練不可少,沒有捷徑,要樂觀,有毅力,要有決心,還要有耐心,學(xué)數(shù)學(xué)是一個很長的過程,你的努力于回報往往不能那么盡如人意的成正比,甚至?xí)邢缕侣返内厔荩灰獔猿窒氯ィ菞l成績線會抬起頭來,一定能看到光明。
《希臘文集》中的方程問題
《希臘文集》是一本用詩歌寫成的問題集,主要是六韻腳詩。荷馬著名的長詩《伊麗亞特》和《奧德賽》就是用這種詩體寫成的。
《希臘文集》中有一道關(guān)于畢達哥拉斯的問題。畢達哥拉斯是古希臘著名數(shù)學(xué)家,生活在公元前六世紀。問題是:一個人問:“尊敬的畢達哥拉斯,請告訴我,有多少學(xué)生在你的學(xué)校里聽你講課?”畢達哥拉斯回答說:“一共有這么多學(xué)生在聽課,其中 在學(xué)習(xí)數(shù)學(xué), 學(xué)習(xí)音樂, 沉默無言,此外,還有3名婦女。”
我們用現(xiàn)代方法來解:設(shè)聽課的學(xué)生有x人,根據(jù)題目條件可列出方程
這是一個一元一次方程。
移項,得
答:畢達哥拉斯有28名學(xué)生聽課。
《希臘文集》中還有一些用童話形式寫成的數(shù)學(xué)題。比如“驢和騾子馱貨物”這道題,就曾經(jīng)被大數(shù)學(xué)家歐拉改編過。題目是這樣的:
“驢和騾子馱著貨物并排走在路上。驢不住地往地埋怨自己馱的貨物太重,壓得受不了。騾子對驢說:‘你發(fā)什么牢騷啊!我馱得的貨物比你重。假若你的貨物給我一口袋,我馱的貨就比你馱的重一倍,而我若給你一口袋,咱倆馱和的才一樣多。’問驢和騾子各馱幾口袋貨物?”
這個問題可以用方程組來解:
設(shè)驢馱x口袋,騾子馱y口袋。則驢給騾子一口袋后,驢還剩x-1,騾子成了y+1,這時騾子馱的是驢的二倍,所以有
2(x-1)=y+1 (1)
又因為騾子給驢一口袋后,騾子還剩下y-1,驢成了x+1,此時騾子和驢馱的相等,有
x+1=y-1 (2)
(1)與(2)聯(lián)立,有
這是一個二元一次議程組。
(1)-(2)得 x-3=2,
x=5 (3)
將(3)代入(2),得y=7。
答:驢原來馱5口袋,騾子原來馱7口袋。
《希臘文集》有一道名的題目“愛神的煩惱”。這里有許多神的名字,先介紹一下:愛羅斯是希臘神話中的愛神,吉波莉達是賽浦路斯島的守護神。9位文藝女神中,葉芙特爾波管簡樂,愛拉托管愛情詩,達利婭管吉劇,特希霍拉管舞蹈,美利波美娜管悲劇,克里奧管歷史,波利尼婭管頌歌,烏拉尼婭管天文,卡利奧帕管史詩。
這道題也是用詩歌形式寫在的:
愛羅斯在路旁哭泣,
淚水一滴接一滴。
吉波莉達向前問道:波利尼
“是什么事情使你如此傷悲?
我可能夠幫助你?”
愛羅斯回答道:
“九位文藝女神
不知來自何方
把我從赫爾康山采回的蘋果,
幾乎一掃而光,
葉芙特爾波飛快地搶走十二分之一,
愛拉托搶得更多——
七個蘋果中拿走一個。
八分之一被達利婭搶走,
比這多一倍的蘋果落入特希霍拉之手。
美利波美娜最是客氣,
只取走二十分之一。
可又來了克里奧,
她的收獲比這多四倍。
還有三位女神,
個個都不空手,
30個歸波利尼婭,
120個歸烏拉尼婭,
300個歸卡利奧帕。
我,可憐的愛羅斯。
愛羅斯原有多少個蘋果?還剩下50個蘋果。”
設(shè)愛羅斯原來有x個蘋果,則6位文藝女神搶走的蘋果分別是 。
可列出方程
答:愛羅斯原來有蘋果3360個。
選自《中學(xué)生數(shù)學(xué)》20xx年5月下
20xx高考數(shù)學(xué)復(fù)習(xí)三步曲
編者按:小編為大家收集了“20xx高考數(shù)學(xué)復(fù)習(xí)三步曲”,供大家參考,希望對大家有所幫助!
今年高考文理科的數(shù)學(xué)試卷總體難度不大,為師生所接受。文科試卷難易程度適中,尤其是填空題和選擇題難度不大,解答題難易程度和試題坡度安排都比較合理,有利于考生的發(fā)揮,也有利于指導(dǎo)以后的學(xué)習(xí)。
理科試卷容易題、中等題和難題比例恰當(dāng),注重邏輯思維能力和表達能力(運用數(shù)學(xué)符號)以及數(shù)形結(jié)合能力的考查,部分試題新而不難,開放題有所體現(xiàn),把能力的考查落到實處。但我個人認為,今年試卷對高中數(shù)學(xué)的主干知識的核心內(nèi)容考查不到位,但不等于我們今后可以完全不重視。
抓基礎(chǔ):不變應(yīng)萬變
把基礎(chǔ)知識和基本技能落到實處。唯有如此才能以不變應(yīng)萬變。比如,文科第22題是一道經(jīng)典題型,考查圓錐曲線上一點到定點距離,既考老師又考學(xué)生。所謂考老師是說這樣的題型你講過沒有,是怎么講的?學(xué)生的典型錯誤(以定點為圓心作一個與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉(zhuǎn)化為二次函數(shù)在某個區(qū)間上的最值)是怎么想到的?只有經(jīng)過這樣的教學(xué)環(huán)節(jié),學(xué)生才能真正理解。所謂考學(xué)生是說你自己做錯了,老師重點講評了的經(jīng)典問題,你掌握了沒有?掌握的標(biāo)準是能否順利解答相應(yīng)的變式問題。由于第(3)含有參數(shù),需要分類討論,能有效甄別考生的思維水平和運算能力。本題以橢圓(解析幾何重點內(nèi)容之一)為載體,考查把幾何問題轉(zhuǎn)化為代數(shù)問題的能力(這是解析幾何的核心思想),以及含參數(shù)的二次函數(shù)求最值問題(也是代數(shù)中的重點和難點),一舉多得。
當(dāng)然,可能會有人認為這道題形式不新,其實,要求考題全新既無必要,也不可能,只要有利于高校選拔和中學(xué)教學(xué)就好,不必過分求新、求異。
理科的第22題相對較難,不少同學(xué)反映不好表述。若能從集合的包含關(guān)系這個角度考慮,則容易表述,部分考生是直接對兩個數(shù)列進行分類,由于要用到一些多數(shù)學(xué)生不熟悉的整除知識,因而感到困難,無法下手。這就體現(xiàn)基礎(chǔ)知識和基本技能的重要性。
盡管今年理科試卷在知識點分布上有些不盡如人意,但復(fù)習(xí)不能受此影響,仍然要全面、扎實復(fù)習(xí),不能留下知識點的死角,相應(yīng)的技能、技巧要牢固掌握,思想方法都要總結(jié)到位,這樣才能“不管風(fēng)吹浪打,勝似閑庭信步”。
破難題:提升應(yīng)對力
如何應(yīng)對“題梗阻”?考試中遇到不會做的題目很正常,有些同學(xué)會因此影響臨場發(fā)揮。考生進考場就像運動員進運動場,心理素質(zhì)很重要,把心理輔導(dǎo)和答題技巧融于學(xué)習(xí)之中。在高三復(fù)習(xí)過程中,不僅要講數(shù)學(xué)知識,同時還要訓(xùn)練學(xué)生的心理素質(zhì)和培養(yǎng)學(xué)生的答題技巧,這樣才能使學(xué)生在考場上應(yīng)付裕如,出色發(fā)揮,考出好成績。
理科的22題第(2)卡住不少考生,耽誤時間還影響心情,以致第(3)和后面第23題來不及或無心去做,其實,做第(3)題用不到第(2)的結(jié)論。而第23題是新編的開放性問題,首先要靜心才能讀懂題目,而讀懂題目至少第(1)、(2)兩題不難。要做到這些并不容易,不是臨考前“先易后難”一句話學(xué)生就能做到,需要在平時教學(xué)過程中結(jié)合具體問題,訓(xùn)練學(xué)生的心理素質(zhì),提高其在解題過程中遇到困難時的應(yīng)變能力,掌握應(yīng)變策略,才能在考場上“敢于放棄”,從容跳過不會做的題或在解答題中跳步解答,把自己能做的題目先做對,把應(yīng)得的分得到,這樣考試總是成功的,無論分數(shù)高低。
為何時間與成績不成正比?高三數(shù)學(xué)就是大量解題,有些重點中學(xué)的優(yōu)秀學(xué)生的高考成績甚至不比高二時考分高,豈不是白學(xué)?其實,這是誤解。數(shù)學(xué)講究邏輯,問題從哪里來(已知),到哪里去(求證),中間有哪些溝溝坎坎(思維障礙),怎么克服(怎樣進行等價轉(zhuǎn)化),不僅是照葫蘆畫瓢的操作性(當(dāng)然也是必要的)訓(xùn)練,更重要的是以數(shù)學(xué)知識為載體,讓學(xué)生學(xué)會思考問題的方式方法,還要在解題后對問題作歸納總結(jié),找出規(guī)律,有時還要把問題作適當(dāng)推廣,把學(xué)生的邏輯思維引到辯證思維。這樣經(jīng)過一年的高三數(shù)學(xué)學(xué)習(xí),學(xué)生收獲的不僅是分數(shù),還有對人終生受用的思維品質(zhì)的提高。
重方法:培養(yǎng)好品質(zhì)
有些同學(xué)做了許多題,就是成績提高不見提高,自己和家長都很納悶。其實學(xué)習(xí)數(shù)學(xué)關(guān)鍵是要掌握方法,同時還要培養(yǎng)敢于做難題、新題的膽量和毅力。重復(fù)性操作的題目做再多,意義也不大。對待難題的態(tài)度是培養(yǎng)學(xué)生意志品質(zhì)的好時機,不能輕易錯過(當(dāng)然也要因人而異)。有些同學(xué)往往認為只要弄懂思路,不必解到底。其實,這樣的同學(xué)往往眼高手低,會而不對,考試成績忽高忽低,原因在于某些細節(jié)處理不當(dāng),造成“一失足成千古恨”,事后以粗心搪塞過去。這就需要老師對學(xué)生深入了解,結(jié)合具體問題給予悉心指導(dǎo),幫助學(xué)生找出真實原因,并制定改正錯誤的辦法,這一過程表面上是幫助學(xué)生學(xué)會解題,實際上對學(xué)生意志品質(zhì)的培養(yǎng)也就潛移默化地得到了落實。
我們有理由相信,把解題和人的素質(zhì)培養(yǎng)有機結(jié)合的高三數(shù)學(xué)教學(xué),不僅能提高學(xué)生的解題能力,還能促使他們健康成長,讓我們一起努力!
以上就是為大家提供的“20xx高考數(shù)學(xué)復(fù)習(xí)三步曲”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。
生物數(shù)學(xué)概論
生物數(shù)學(xué)是生物學(xué)與數(shù)學(xué)之間的邊緣學(xué)科。它以數(shù)學(xué)方法研究和解決生物學(xué)問題,并對與生物學(xué)有關(guān)的數(shù)學(xué)方法進行理論研究。
生物數(shù)學(xué)的分支學(xué)科較多,從生物學(xué)的應(yīng)用去劃分,有數(shù)量分類學(xué)、數(shù)量遺傳學(xué)、數(shù)量生態(tài)學(xué)、數(shù)量生理學(xué)和生物力學(xué)等;從研究使用的數(shù)學(xué)方法劃分,又可分為生物統(tǒng)計學(xué)、生物信息論、生物系統(tǒng)論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學(xué)研究對象,只研究那些涉及生物學(xué)應(yīng)用有關(guān)的數(shù)學(xué)方法和理論。
生物數(shù)學(xué)具有豐富的數(shù)學(xué)理論基礎(chǔ),包括集合論、概率論、統(tǒng)計數(shù)學(xué)、對策論、微積分、微分方程、線性代數(shù)、矩陣論和拓撲學(xué),還包括一些近代數(shù)學(xué)分支,如信息論、圖論、控制論、系統(tǒng)論和模糊數(shù)學(xué)等。
由于生命現(xiàn)象復(fù)雜,從生物學(xué)中提出的數(shù)學(xué)問題往往十分復(fù)雜,需要進行大量計算工作。因此,計算機是研究和解決生物學(xué)問題的重要工具。然而就整個學(xué)科的內(nèi)容而論,生物數(shù)學(xué)需要解決和研究的本質(zhì)方面是生物學(xué)問題,數(shù)學(xué)和電腦僅僅是解決問題的工具和手段。因此,生物數(shù)學(xué)與其他生物邊緣學(xué)科一樣通常被歸屬于生物學(xué)而不屬于數(shù)學(xué)。
生命現(xiàn)象數(shù)量化的方法,就是以數(shù)量關(guān)系描述生命現(xiàn)象。數(shù)量化是利用數(shù)學(xué)工具研究生物學(xué)的前提。生物表現(xiàn)性狀的數(shù)值表示是數(shù)量化的一個方面。生物內(nèi)在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現(xiàn)性狀,依據(jù)性狀本身的生物學(xué)意義,用適當(dāng)?shù)臄?shù)值予以描述。
數(shù)量化的實質(zhì)就是要建立一個集合函數(shù),以函數(shù)值來描述有關(guān)集合。傳統(tǒng)的集合概念認為一個元素屬于某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的模糊現(xiàn)象,而集合概念的明確性不能貼切地描述這些模糊現(xiàn)象,給生命現(xiàn)象的數(shù)量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學(xué)中許多模糊現(xiàn)象,為生命現(xiàn)象的數(shù)量化提供了新的數(shù)學(xué)工具。以模糊集合為基礎(chǔ)的模糊數(shù)學(xué)已廣泛應(yīng)用于生物數(shù)學(xué)。
數(shù)學(xué)模型是能夠表現(xiàn)和描述真實世界某些現(xiàn)象、特征和狀況的數(shù)學(xué)系統(tǒng)。數(shù)學(xué)模型能定量地描述生命物質(zhì)運動的過程,一個復(fù)雜的生物學(xué)問題借助數(shù)學(xué)模型能轉(zhuǎn)變成一個數(shù)學(xué)問題,通過對數(shù)學(xué)模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關(guān)結(jié)論,達到對生命現(xiàn)象進行研究的目的。
比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規(guī)律;通過描述捕食與被捕食兩個種群相克關(guān)系的洛特卡-沃爾泰拉方程,從理論上說明:農(nóng)藥的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導(dǎo)致害蟲更猖獗地發(fā)生等。
還有一類更一般的方程類型,稱為反應(yīng)擴散方程的數(shù)學(xué)模型在生物學(xué)中廣為應(yīng)用,它與生理學(xué)、生態(tài)學(xué)、群體遺傳學(xué)、醫(yī)學(xué)中的流行病學(xué)和藥理學(xué)等研究有較密切的關(guān)系。60年代,普里戈任提出著名的耗散結(jié)構(gòu)理論,以新的觀點解釋生命現(xiàn)象和生物進化原理,其數(shù)學(xué)基礎(chǔ)亦與反應(yīng)擴散方程有關(guān)。
由于那些片面的、孤立的、機械的研究方法不能完全滿足生物學(xué)的需要,因此,在非生命科學(xué)中發(fā)展起來的數(shù)學(xué),在被利用到生物學(xué)的研究領(lǐng)域時就需要從事物的多方面,在相互聯(lián)系的水平上進行全面的研究,需要綜合分析的數(shù)學(xué)方法。
多元分析就是為適應(yīng)生物學(xué)等多元復(fù)雜問題的需要、在統(tǒng)計學(xué)中分化出來的一個分支領(lǐng)域,它是從統(tǒng)計學(xué)的角度進行綜合分析的數(shù)學(xué)方法。多元統(tǒng)計的各種矩陣運算,體現(xiàn)多種生物實體與多個性狀指標(biāo)的結(jié)合,在相互聯(lián)系的水平上,綜合統(tǒng)計出生命活動的特點和規(guī)律性。
生物數(shù)學(xué)中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學(xué)家常常把多種方法結(jié)合使用,以期達到更好的綜合分析效果。
多元分析不僅對生物學(xué)的理論研究有意義,而且由于原始數(shù)據(jù)直接來自生產(chǎn)實踐和科學(xué)實驗,有很大的實用價值。在農(nóng)、林業(yè)生產(chǎn)中,對品種鑒別、系統(tǒng)分類、情況預(yù)測、生產(chǎn)規(guī)劃以及生態(tài)條件的分析等,都可應(yīng)用多元分析方法。醫(yī)學(xué)方面的應(yīng)用,多元分析與電腦的結(jié)合已經(jīng)實現(xiàn)對疾病的診斷,幫助醫(yī)生分析病情,提出治療方案。
系統(tǒng)論和控制論是以系統(tǒng)和控制的觀點,進行綜合分析的數(shù)學(xué)方法。系統(tǒng)論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態(tài)方程把錯綜復(fù)雜的關(guān)系都結(jié)合在一起,在綜合的水平上進行全面分析。對系統(tǒng)的綜合分析也可以就系統(tǒng)的可控性、可觀測性和穩(wěn)定性作出判斷,更進一步揭示該系統(tǒng)生命活動的特征。
在系統(tǒng)和控制理論中,綜合分析的特點還表現(xiàn)在把輸出和狀態(tài)的變化反饋對系統(tǒng)的影響,即反饋關(guān)系也考慮在內(nèi)。生命活動普遍存在反饋現(xiàn)象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續(xù)。對系統(tǒng)的控制常常靠反饋關(guān)系來實現(xiàn)。
生命現(xiàn)象常常以大量、重復(fù)的形式出現(xiàn),又受到多種外界環(huán)境和內(nèi)在因素的隨機干擾。因此概率論和統(tǒng)計學(xué)是研究生物學(xué)經(jīng)常使用的方法。生物統(tǒng)計學(xué)是生物數(shù)學(xué)發(fā)展最早的一個分支,各種統(tǒng)計分析方法已經(jīng)成為生物學(xué)研究工作和生產(chǎn)實踐的常規(guī)手段。
概率與統(tǒng)計方法的應(yīng)用還表現(xiàn)在隨機數(shù)學(xué)模型的研究中。原來數(shù)學(xué)模型可分為確定模型和隨機模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現(xiàn)隨機性變化不能完全確定,稱為隨機模型。又根據(jù)模型中時間和狀態(tài)變量取值的連續(xù)或離散性,有連續(xù)模型和離散模型之分。前述幾個微分方程形式的模型都是連續(xù)的、確定的數(shù)學(xué)模型。這種模型不能描述帶有隨機性的生命現(xiàn)象,它的應(yīng)用受到限制。因此隨機模型成為生物數(shù)學(xué)不可缺少的部分。
60年代末,法國數(shù)學(xué)家托姆從拓撲學(xué)提出一種幾何模型,能夠描繪多維不連續(xù)現(xiàn)象,他的理論稱為突變理論。生物學(xué)中許多處于飛躍的、臨界狀態(tài)的不連續(xù)現(xiàn)象,都能找到相應(yīng)的躍變類型給予定性的解釋。躍變論彌補了連續(xù)數(shù)學(xué)方法的不足之處,現(xiàn)在已成功地應(yīng)用于生理學(xué)、生態(tài)學(xué)、心理學(xué)和組織胚胎學(xué)。對神經(jīng)心理學(xué)的研究甚至已經(jīng)指導(dǎo)醫(yī)生應(yīng)用于某些疾病的臨床治療。
繼托姆之后,躍變論不斷地發(fā)展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發(fā)展對生物群落的分布、傳染疾病的蔓延、胚胎的發(fā)育等生物學(xué)問題賦予新的理解。
上述各種生物數(shù)學(xué)方法的應(yīng)用,對生物學(xué)產(chǎn)生重大影響。20世紀50年代以來,生物學(xué)突飛猛進地發(fā)展,多種學(xué)科向生物學(xué)滲透,從不同角度展現(xiàn)生命物質(zhì)運動的矛盾,數(shù)學(xué)以定量的形式把這些矛盾的實質(zhì)體現(xiàn)出來。從而能夠使用數(shù)學(xué)工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯(lián)系在一起,通過綜合分析闡明生命活動的機制。
總之,數(shù)學(xué)的介入把生物學(xué)的研究從定性的、描述性的水平提高到定量的、精確的、探索規(guī)律的高水平。生物數(shù)學(xué)在農(nóng)業(yè)、林業(yè)、醫(yī)學(xué),環(huán)境科學(xué)、社會科學(xué)和人口控制等方面的應(yīng)用,已經(jīng)成為人類從事生產(chǎn)實踐的手段。
數(shù)學(xué)在生物學(xué)中的應(yīng)用,也促使數(shù)學(xué)向前發(fā)展。實際上,系統(tǒng)論、控制論和模糊數(shù)學(xué)的產(chǎn)生以及統(tǒng)計數(shù)學(xué)中多元統(tǒng)計的興起都與生物學(xué)的應(yīng)用有關(guān)。從生物數(shù)學(xué)中提出了許多數(shù)學(xué)問題,萌發(fā)出許多數(shù)學(xué)發(fā)展的生長點,正吸引著許多數(shù)學(xué)家從事研究。它說明,數(shù)學(xué)的應(yīng)用從非生命轉(zhuǎn)向有生命是一次深刻的轉(zhuǎn)變,在生命科學(xué)的推動下,數(shù)學(xué)將獲得巨大發(fā)展。
當(dāng)今的生物數(shù)學(xué)仍處于探索和發(fā)展階段,生物數(shù)學(xué)的許多方法和理論還很不完善,它的應(yīng)用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復(fù)雜的生物學(xué)問題至今未能找到相應(yīng)的數(shù)學(xué)方法進行研究。因此,生物數(shù)學(xué)還要從生物學(xué)的需要和特點,探求新方法、新手段和新的理論體系,還有待發(fā)展和完善。
20xx年高考數(shù)學(xué)命題預(yù)測之立體幾何
【編者按】近幾年高考立體幾何試題以基礎(chǔ)題和中檔題為主,熱點問題主要有證明點線面的關(guān)系,如點共線、線共點、線共面問題;證明空間線面平行、垂直關(guān)系;求空間的角和距離;利用空間向量,將空間中的性質(zhì)及位置關(guān)系的判定與向量運算相結(jié)合,使幾何問題代數(shù)化等等。考查的重點是點線面的位置關(guān)系及空間距離和空間角,突出空間想象能力,側(cè)重于空間線面位置關(guān)系的定性與定量考查,算中有證。其中選擇、填空題注重幾何符號語言、文字語言、圖形語言三種語言的相互轉(zhuǎn)化,考查學(xué)生對圖形的識別、理解和加工能力;解答題則一般將線面集中于一個幾何體中,即以一個多面體為依托,設(shè)置幾個小問,設(shè)問形式以證明或計算為主。
20xx年高考中立體幾何命題有如下特點:
1.線面位置關(guān)系突出平行和垂直,將側(cè)重于垂直關(guān)系。
2.多面體中線面關(guān)系論證,空間“角”與“距離”的計算常在解答題中綜合出現(xiàn)。
3.多面體及簡單多面體的概念、性質(zhì)多在選擇題,填空題出現(xiàn)。
4.有關(guān)三棱柱、四棱柱、三棱錐的問題,特別是與球有關(guān)的問題將是高考命題的熱點。
此類題目分值一般在17---22分之間,題型一般為1個選擇題,1個填空題,1個解答題
【數(shù)學(xué)解題方】相關(guān)文章:
數(shù)學(xué)解題方法11-28
數(shù)學(xué)常用的幾種經(jīng)典解題方法03-30
高一數(shù)學(xué)解題方法03-03
數(shù)學(xué)選擇題的解題技巧06-30
高一數(shù)學(xué)解題套路三篇03-08
各種題型解題方法09-01
對承辦方的感謝05-10
方兒茶的功效09-07
邏輯解題三大技巧06-04